How long do Python Postgres tools take to load data?

Data is crucial for all applications. While fetching a significant amount of data from database multiple times, faster data load times improve performance. The post considers tools like SQLAlchemy statement, SQLAlchemy ORM, Pscopg2, psql for measuring latency. And to measure the python tool timing, jupyter notebook’s timeit is used. Psql is for the lowest time taken reference. Table Structure annotation=> \d data; Table "" Column | Type | Modifiers --------+-----------+--------------------------------------------------- id | integer | not null default nextval('data_id_seq'::regclass) value | integer | label | integer | x | integer[] | y | integer[] | Indexes: "data_pkey" PRIMARY KEY, btree (id) "ix_data_label" btree (label) annotation=> select count(*) from data; count --------- 1050475 (1 row) SQLAlchemy ORM Declaration class Data(Base): __tablename__ = 'data' id = Column(Integer, primary_key=True) value = Column(Integer) # 0 => Training, 1 => test label = Column(Integer, default=0, index=True) x = Column(postgresql. [Read More]

Return Postgres data as JSON in Python

Postgres supports JSON and JSONB for a couple of years now. The support for JSON-functions landed in version 9.2. These functions let Postgres server to return JSON serialized data. This is a handy feature. Consider a case; Python client fetches 20 records from Postgres. The client converts the data returned by the server to tuple/dict/proxy. The application or web server converts tuple again back to JSON and sends to the client. [Read More]